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Abstract-This paper concerns the determination of the effective elastic moduli of an isotropic composite
material containing randomly distributed spheres of the same size at non-dilute concentrations lb. By
employing the solutions[18, 19] for the elasticity problems of two interacting spheres in the presence of
four different applied strains at infinity and a method developed by Batchelor [15, 27] and by Jeffrey [16, 17]
for computing bulk quantities which involve conditionally convergent integrals, we evaluate the effective
moduli of the composite exactly to order 1b2 and thereby extend the Einstein formula.

In the particular case of an incompressible matrix, the expression for the bulk modulus K, when
rearranged, leads to an extension of Taylor's result[20] for the expansion viscosity of an incompressible
fluid containing air bubbles.

The present calculations have a wider significance than just to elasticity in that they give a better
understanding of the method of normalization[17] for converting a conditionally convergent integral into
one that is absolutely convergent. Specifically, when the applied strain is isotropic, two sources of
indeterminancy are uncovered. The first arises from the unusual property of Sl]l, the additional dipole of
one sphere due to the interaction with a second which is required for the evaluation of the bulk moduli to
O(lb 2

), whose trace for R ~ 1 is O(R-6
), when R is the distance between the two sphere centers, whereas,

all its other elements are O(R-3
). This suggests that there may exist a method for calculating the effective

bulk modulus which does not require a normalization to lead to an absolutely convergent integral and which
gives. apparently, a different result. Secondly. the exact method of normalization is not unambiguous in that
two possible ways of normalizing are shown to exist. However. when higher-order particle interactions
(especially the three-particle interactions) are taken into account, this indeterminancy is resolved and a
unique type of expansion applies.

I. INTRODUCTION
We consider here the elastic behaviour of an idealized composite material consisting of many
particles embedded firmly in a continuous matrix. Both the discrete and continuous phases are
assumed to be linearly elastic and isotropic with bulk and shear moduli Kp, ILp and Ko, ILo
respectively. We wish to calculate the effective moduli of this composite, K* and IL *, which, in·
general, will depend on the volume concentration of the inclusions q" the elastic moduli of the
two phases and the shape, size and spatial distribution of the particles. The present analysis will
be limited to a macroscopically homogeneous and isotropic composite with spherical inclusions
of the same size and of random spatial distribution.

Several authors[I]-[14] have examined this problem before. One approach, employed by
Hashin and Shtrikman [4] and by Walpole [7], uses a variational theorem to obtain upper and
lower bounds for the effective moduli. The corresponding results [4] and [7] are

(Ko+ K/)q, < K* - Ko < (Kp + Kg)q,
Ko+ K/ + (Kp - Ko)( 1- q, ) - Kp - Ko - Ko + Kg + (Kp - Ko)(1 - q,)'

(ILo + ILl )q, < IL *- ILo < (ILo + ILg )q,
ILo + ILL + (ILp - ILo)(l - q,) ILp - ILo - ILo + ILg + (ILp - ILo)(1- q,)

where if (ILp - ILo)(Kp - Ko) 2: 0, then

(la)

(lb)

3 ( 1 10 )-1
ILl = '2 ILo + 9Ko+ 8ILo
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while if (ILl' - ILo)(Kp - Ko) :5 0,
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3 ( 1 10 )-1ILl =- - + -,-----:c--
2 ILo 9Kp +8ILo

These inequalities yield satisfactory estimates for the effective moduli when the ratios between
the corresponding moduli of the two phases are not too large. In the extreme cases of either
empty or rigid inclusions, the bounds diverge even at low concentrations. Surprisingly though,
when the two phases have the same shear modulus ILo the two bounds are equal. In fact, Hill [5J
proved that, in that case, the overall bulk modulus of an isotropic mixture depends on the
concentration q, plus the moduli Kp and Ko but not on the shapes of the inclusions, and gave the
exact expression for the overall bulk modulus

(2)

The above result for the effective bulk modulus is also exact for a material that is constructed
by filling a body with composite (concentric) spheres of different sizes [13].

Recently, MiIler[14] showed that the bounds for the effective modulus K* given by (la) can
be further improved by including the shape factor of the cell materials. For a spherical cell shape.
he gave

[3Ko +4ILo + 3Koq,(/3-1 - l)]q, < K* - Ko

3Kp+4ILo + 3q,(Ko - 2Kp+ Kp/3 1) + 3q,2(Ko - Kp)(/3 I - I) Kp - Ko

< [3Ko +4ILo +4q,(ILp - ILo)]q,
- 3Kp+4ILo + q,[3(Ko - Kp) +4(ILp - ILo)J

(3)

for /3 = (ILl'/ ILo) and Kp ~ Ko. When the volume fraction of the particles is small, the above
bounds converge to

A second method, valid at infinite dilution for any ratio of the moduli of the two phases,
yields the effective moduli by considering the effect of a single inclusion in an infinite medium
under a specified strain. Using this technique, Hashin [3] and others [1,2] obtained the O(q,) terms
in the expressions for K* and IL *, while Walpole [8] determined in part the O(q,2) contribution.
Walpole's results can be written as

(4)

and

(5)

where 'Y1=(3Kp -3Ko)/(3Kp +4ILo)' 110 is Poisson's ratio for the matrix and 'Y2=
(/3 - 1)/[2/3(4 - 5110) + (7 - 5110 )J, with /3 == ILp/ ILo being the ratio of the two shear moduli.

To O(cf>2), these expressions for K* and IL * coincide with the upper bounds given in (I a) and
(lb) when the particles are weaker than the matrix (Ko > Kp and ILo > ILp), and with the lower
bounds when the converse is true. Unfortunately, Walpole's[8] analysis does not take into
account particle-pair interactions within the composite and hence, strictly speaking, (4) and (5)
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are valid only for a suspension of well-separated spheres. Thus, when the spheres are randomly
distributed in the suspension, eqns (4) and (5) are valid only to O(cfJ).

In a recent paper by Willis and Acton[l2] the effective elastic moduli were also calculated to
0(cfJ2) through the use of an integral equation formulation. However, since these authors only
used the far field solution for the two-sphere interaction problem, their results are not exact and
can be shown to be an approximation to our solution.

In this paper, the coefficient of the cfJ2 term will be determined for a randomly distributed
suspension using a method developed recently by Batchelor and Green[15] and by Jeffrey[16,
17] to relate the macroscopic properties of a composite to its microscopic structure through a
probability density function describing the distribution of the inclusions in the medium. To this
end, it will be necessary to make use of the solution of certain two-sphere problems presented
in Chen's dissertation[18], henceforth referred to as [I], and a companion paper by Chen and ,
Acrivos[19]. For the purpose of comparing them with [4} and [5], the resulting expressions for·
the effective moduli will then be presented in the form

(6)

and

(7)

The coefficient HI and H 2 in the above equations depend on the parameter fJ and the two
Poisson's ratios Pp and Po. The function HI has been evaluated for different combinations of p,
Pp and Po; however, owing to the difficulty of solving the interaction problem for two elastic
spheres in a shear strain, H2 was calculated only for the limiting cases of rigid particles (fJ = 00)
and cavities (fJ = 0). Physically, the values given for HI and H 2 apply to a suspension in which
the spheres are randomly distributed. For a suspension containing well-separated spheres, a
case studied by Walpole[8}, both HI and H 2 are equal to unity.

The present results satisfy the Hashin-Shtrikman variational bounds[4], Miller's bounds for
the effective bulk modulus[14], and are also in good agreement with Batchelor and Green's[15]
calculation of the effective shear modulus for the case of rigid spheres embedded in an
incompressible matrix. Their coefficient of the cfJ2 term in (7) is 5.2 ± OJ while ours is 5.01 with a
possible error in the third digit. Willis and Acton's [12] corresponding result (155/32) is lower
because, as mentioned earlier, these authors used only the far field solution for two-sphere
interaction problem.

When the matrix is almost incompressible (po - 0.5 andKo is large), eqn (6) can be recast in
its equivalent form

where H is defined by HI = 1+(1- 2Po )H. In the particular case of an incompressible matrix,
this expression for K* becomes

*= 4J.Lo + 3Kp _ (~_ H) 0(-1..)
K 3</1 j.Lo 3 + '1',

which, when the particles are cavities, gives for the effective Lame constant A*

(9)

(10)

The latter extends Taylor's result[20] for the expansion viscosity of an incompressible fluid
containing air bubbles.

We will now proceed with the development of the theory.
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2. GENERAL EXPRESSION FOR THE EFFECTIVE ELASTIC MODULI TO ORDEFI </I'

For composite materials satisfying the conditions of macroscopic homogeneity, the bulk
stress (Ujj) and the bulk strain (ejj) are related by (Russel and Acrivos [21]),

(11)

where

Here, V is a sample volume whose dimensions are large relative to a, the radius of an
individual spherical particle within the composite, but small relative to the characteristic
macroscale of the system. Also, N is the number of spheres within V, An is the surface of the
nth sphere, Xj is the position vector with respect to a fixed origin, nj is the unit outer normal to
Am and the brackets ( ) denote the volume (or ensemble) average of the enclosed quantity. In
deriving (11), the assumption has been made that the matrix is an isotropic and linearly elastic
material with Lame constants Ao and jLo, where jLo is also called the modulus of rigidity or the
shear modulus. The relations between the Lame constants A and jL, Poisson's ratio P, Young's
modulus E, and the bulk modulus (sometimes called the modulus of compression) K of an
isotropic material can be found in standard texts on the subject, e.g. Sokolnikoff[22]. An
isotropic material is characterized by any two of the five parameters listed above. Of these we
shall employ primarily K, jL and P, using the subscripts 0, p and the superscript * to denote the
matrix, the inclusions and the composite, respectively. Here and elsewhere in this paper, we
adopt the Cartesian tensor subscript notation with repeated subscripts indicating summation.

The effects of the inclusions on the bulk stress are contained in the particle stress 2: jj, which
vanishes indentically in the absence of the discrete phase. Now define

(12)

where A rer is the surface of a reference sphere. Equation (11) can then be written as

(13)

where n = (q,/ Vp ) is the number density of the inclusions in the composite and Vp denotes the
volume of a single sphere. The quantity 5jj is the average value of Sjj over all particles, i.e.

P( C/O) being the probability density function of the configuration C with the reference sphere
at the origint. If q, ~ 1, so that the interaction between particles can be neglected, the average

tThe parameter 5,j introduced above can also be related to the additional strain energy stored in the composite.
Specifically. we define W. the average strain energy over the volume V of the composite. by

I II I I ilU,W =V 2u'je'jd V =2V cr'j ilx; d V.

which becomes

if the displacement is expressed as the sum of the average field and the disturbance. i.e. u, = (u,) + ui. However. since the
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value Sjj can be approximated by SIr), the value of Sjj for a single inclusion in an infinite matrix.
In this case, (13) becomes

(14)

with an erf')r of O(4,z). SIr) can be evaluated from the solution for an isotropic tension [3] and
that for a simple tension[23] to be

In obtaining the above from the single particle solution, the applied strain at infinity was set
equal to the bulk strain (ej).

Since the effective moduli are defined by

(16)

and

(17)

substitution of (15) into (14), followed by a comparison with (16) and (17), leads to the
well-known relation for the effective moduli

(l8a)

(l8b)

and

(l8c)

To extend the above to O(</J2), it is necessary to calculate the additional dipole Sl? == Sjj­
sIr) on the reference sphere due to the presence of the second particle. This quantity is a
function of the relative position of the second particle and of the bulk strain, but, owing to the
linearity of the problem, sl? must be linear in (ejj). Hence its general form becomes

(19)

orders of magnitude of ui and the fluctuating part of U'ij are. respectively, aE and /looE near an inclusion of dimension a and
smaller away from the particle, where E is the magnitude of the bulk strain, the second term is negligible compared with
the first if, as we have assumed all along this analysis, all bulk quantities within the composite vary appreciably over
distances which are much larger than the particle dimension a. Thus we obtain

The additional strain energy can then be calculated as

where Wo is the strain energy in the absence of inclusions.
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where the scalarfunctions F, a, N, K, Land M depend on the properties of the two individual
phases and the dimensionless quantity p = (aIR) with R = 1';/ being the distance between the
centers of two spheres of radius a. Also the reference particle is at the origin and the second
particle is at 'i. The asymptotic forms of these functions for large R, easily determined through
the use of method of reflections, are

a =401Ta\'o(1- Vo hl"YZp 3 +a/
N =401Ta 3Jlo(1- Vo hl"YZp 3 -IOO1Ta 3Jlo(1- vo)(S - 4vo hzz

p
3 + N'

K = - 2001Ta 3Jlo(1- vo)(1- 2voh/p3 + K'

L = -6001Ta 3Jlo(1- vo)vo"y/p3+ L'

M = ISOO1Ta 3Jlo(1- voh/p3+ M' (20)

where P, a', N', K', L' and M' are of O(p5). Following then Jeffrey [15] and [I) we can rewrite
(13) as

(Uij) = Ao(ekk)~ij + 2Jlo(eij) + nS\?J + nJ{S\p(rIO)P(rIO) - S\?)[E I1 )]P(rj}dr+ O(4J3). (21)

where elf) == ejj - (ei) denotes the additional strain at the origin due to a single particle being at r
undergoing the applied strain (ejj) at infinity. The second term in the integral of (21) is needed to
render this integral absolutely convergent[l7], a choice which, as we shall show in the next
section, is unique in spite of two apparently alternate possibilities.

The two functions P(rIO) and P(r) in (21) refer to the probability density of finding one
particle at r with and without a second particle being at the origin. For a suspension containing
randomly distributed particles, P(r) is simply equal to n, the number density of the particles.
However, to find P(rIO), which depends on the microstructure of the suspension, is more
difficult. Following earlier work, e.g. [17], we shall assume here that the second particle can take
any possible position in the suspension with equal probability except that it cannot overlap with
the test sphere. Consequently,

P(rIO) = ° for R < 2a

= n for R;::: 2a.

For a sphere being at 'j and with the applied strain (ejj) at infinity, the additional strain e\}' at
the origin can be obtained from Eshelby's result(24)

(22)

where

~ 2 2 21T R2 for R == 1';/:5 aW = 1Ta -3

41Ta 2 I
for R;:::a

3 R

W = 1Ta4+ ~1Ta2R2_!!...R4 for R:5 a
3 IS

=41T a3R + 41T a
5

for R;:::a.
3 IS R
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With SI7)[E(')] given by (15) plus (22) and s\f) by (19) we then obtain for (2\)

with

35:

(23)

and

Comparison of (23) with (16) yields

(26)

Thus, to find K* and JL *, it is merely necessary that we evaluate the two integrals in (24) and
(25) which, as shown below, can be achieved most conveniently by solving the two-sphere
elasticity problem for a particular combination of bulk strains and then using (19) to determine
the six functions F, G, ... from SIj> as calculated from these special solutionst.

Specifically, following Batchelor and Green [15], we define a function J as

and, following their lead, we define

I I
I=F+-G+-N3 3'

In view of (20), it can be shown that

Also, although each individual function having a prime is of O(p5), both J and I turn out to be
O(p6). As seen from (24) and (25), the calculation of the effective moduli requires that I and J
be found. To this end, we fix the particle orientation and let the center of the second sphere be
at 'i = Rlh so that (19) becomes

SIj> = F(Ekk)8ij + G(E33)8;j + N (Ekk)8i38j3 + K (E;j) - ~ (Ekk)8;j)

+ L«Ei3)8j3 +(Ej3)8i3 - ~ (E33)8;j) + M(E33)(8i38j3 - j8;j).

tThe t/J2 coefficients in (24) and (25) each consists of two parts. of which the first. 1+ (4/L"/3K,,)y,2 and 30(1- v,,)(4­
5vo lY/. respectively, are obtained after integrating the last term in (21) from 0 to 2a. Following Jeffrey [16], we interpret
this integral as representing the effects of long-range particle interactions within the suspension which, in fact. were
already determined by Walpole[SI. Moreover we can use the present results to help cast some light on the self-consistent
scheme particularly in the form proposed by Kerner [2]. Specifically, if Kerner's expressions for the effective moduli are
expanded in powers of t/J, the t/J2 coefficients thus obtained are the same as those found here for the long-range
contributions. Hence, we may tentatively conclude that. although the self-consistent scheme does account for the
long-range interactions within the suspension, it apparently does not do so for the interactions among close particles.
Justification for this interpretation of self-consistent schemes has been given recently by Jeffrey (25). For a further
discussion of the possible utility of self-consistent schemes, the reader is referred to Hashin[26].
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We can then choose the appropriate bulk strain to solve for the functions I and J, or any
combinations of the six functions F, G, N, K, L, M that can produce I and J.

First of all, the choice of the isotropic strain (e;i) =5ji yields

and, therefore,

(27)

from which K* can be determined. This case has been studied extensively in [I] for elastic
inclusions. Unfortunately, it is not possible to find a single strain that can produce the function
J, and it becomes necessary to solve three different problems corresponding to three in­
dependent bulk shear strains, before J can be obtained. These strains are:

(29)

(30)

We then have that J = (1/5) x eqn (28) +(2/5) x eqn (29) +(2/5) x eqn (30). The above three cases
were also examined in [I] for rigid particles and cavities.

Before proceeding with the calculation of the effective moduli of composite materials, we
wish to discuss an alternative method of evaluating the bulk modulus K* and to examine briefly
the method of normalization which was used to obtain (21) from (13).

3. METHOD OF NORMALIZATION

It is of some interest to point out here that if one adopts the normalization formalism as
originally proposed by Batchelor [27], two ambiguities are encountered in the calculation of the
effective bulk modulus K* which, as we shall show however, can be resolved if the complete
formulation is used. The first apparent alternative to (21) arises from the fact that an alternative
way of calculating K* is, of course, from its definition

(31)

which can be obtained readily from (16). Physically, (ejj) refers to change of a unit volume of
the composite and K* is the modulus of compression. Comparison of (14), with i = j, and (31)
yields the same result as given by (l8c).

To calculate the 0(4)2) term from the above definition leads, however, to some difficulties.
First of all, following a standard procedure (see Ref. [17]), we rewrite (13) as

(32)

and then approximate S\]) (C10) by S\}l (riO) which is the additional dipole due to the presence
of a second sphere at r. Then, if we neglect the effect of all the other spheres in C on SI?, we
obtain

(33)

However, since for larger R == Irl, Sll' (riO) varies as R-3 and P(r!O) = n, the integral in (33) is
only conditionally convergent and gives no meaningful results unless the mode of integration is



Effective elastic moduli of composite materials 357

(35)

justified. One way of modifying such a conditionally convergent integral, originally proposed by
Batchelor[27], is to subtract from (33) a term which averages to zero and has the same
asymptotic behavior as Sill (flO) at infinity. This is the so-called method of normalization.

On the other hand, when the trace of (33) is considered one obtains

in which the integral is absolutely convergent because S\ll(fIO) is only R-6 for large R when the
applied strain is isotropic. On physical grounds it should not matter, of course, whether the full
tensor of only its trace is used for the purpose of calculating K* and, the results should always
be the same as they are for the O(cP) term. It would appear though that the method which
retains the full tensors and uses the normalization technique gives an extra term which comes
from the excluded volume effect or the multiparticle interactions. This apparent contradiction
will now be resolved.

As remarked above, the expansion for Sij, i.e.

= S\7l+f s\jl(r'IO)P(rIO)df +f SW(f\f21°)p(f\fzlO)df\dr2+ .

contains, in general, conditionally convergent integrals, which must be recast into absolutely
convergent ones, e.g. through use of the normalization technique, before they can be evaluated.
For the purpose of calculating the effective bulk modulus, however, we can employ the trace of
(35), i.e.

in which S\P is absolutely convergent. Nevertheless, it can be shown, see [I], that the next term
S\rl and, therefore all the rest in the above expression, are only conditionally convergent, and
hence, in order to evaluate Sii, a normalization is still needed. Thus, an extra term has to be
subtracted from (34) to give the correct result.

Having resolved the first ambiguity, we now turn to the second. A way of implementing the
normalization to the present problem is to follow Batchelor [27] and Jeffrey [16] and rewrite (32)
as

where X has to be determined so that the integral will be absolutely convergent. For most types
of applied strains, X can be uniquely determined; however, as shown in [I] there are two
possible choices for X when the applied strain at infinity is isotropic, i.e. (eij) = l)jj' One of them
is X = 401Ta 3(l- lIo)P.o'Y2 and the other is the fourth order tensor

Further analysis shows, however, that since the normalization has to be applied as well to
the higher order terms of (35), one has to adopt the scheme developed by Jeffrey[17] and
identify the term X . E(l) with S\?)(E(ll). This uniquely determines X to be the fourth order
tensor given above and thereby leads directly to eqns (21). It should be noted that the results
given in this section have been made the basis of a more general discussion by Jeffrey [25] of
the possible normalization methods which have so far appeared in the literature.

Having then satisfied ourselves regarding the validity and uniqueness of (21), we shall
proceed now directly from (24) and (25) and utilize the solutions for the two-particle interaction
problems given in [I] and [19] to calculate the effective moduli.
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4. RESULTS AND DISCU SSIONS

In [I] and in the companion paper [I9J, the four different two-sphere problems corresponding
to the four different applied strains mentioned in Section 2 were solved by the use of the
"multipole expansion" technique. Accordingly, the solution of each problem was expanded in a
series of spherical harmonic functions with respect to the two centers of the spheres, and a set
of equations relating the coefficients of these spherical harmonics was obtained by applying the
boundary conditions of continuity of traction and displacement on the surface of the spheres.
To solve for these coefficients as functions of the separation distance R between the two
spheres, each of them was further expanded into a power series of the parameter p == a/R,
and a recurrence formula was thereby obtained for calculating this new set of coefficients.

The first of the four problems that was solved was for the system of two elastic particles
under the applied isotropic strain (e;j) == 5;j at infinity. The effective bulk modulus, as computed
from (27) and (24), can then be expressed as

00 m-3

where H(f3, /lp' /10) == ~ ~ 20
-
m

)(n + I)/(m - 3)Cn(m-n-2l) and Cnm are given by the recurrence
m=6 n<=)

formula presented in [I]. The first few terms in the series are

_ 5(f3-1) . 21(f3-1)
H(f3, /lp, /10) - 4[2f3(4 - 5vo) + (7 - 5vo)) + 16[2f3(11 - 14vo ) + (13 -7/10))

25(f3 - 1)2(2 - po) 9(f3 - I)
+ 32[2f3 (4 - 5v0) + (7 - 5v0))2+ 7":32=[2-=f3-=(7-:-_-::9"-/I0"""')--"+-=(7-:---=3-v0-=)]

(f3 - 1)2 [105(11 - 4vo )

+ 256[2f3(4 - 5/10) + (7 - 5/10)) 2f3(11 - 14/10) + (13 -7vo)

135 ] I [ 250(2 - vo)2(f3 - 1)3
-2f3(4-5vo)+(7-5vo) +384 [2f3(4-5vo)+(7-5vo))3

+ 165(f3 - I)
4f3(17 - 22vo)+ (31 - 11 /10)

+ 25(f3 _1)2[f3(1 + /lp)(I- 2vo)- (1- 2vp)(I + Vo)]]
[2f3(4- 5/10)+(7 - 5/1o))2[f3(1 + vp)+ (I-2/1p))

+...... (38)

The values of H were then obtained by summing the infinite series using a computer. Fifty
or more terms of the series were calculated. We then used the partial sums of these terms, Sm,
plotted vs lim to extrapolate to 11m == 0, and estimated the sum of the infinite series. For a few
values of /10' we plotted the logarithm of each term in (38) vs In m and obtained the
corresponding asymptotic form of the terms of large m, which was then used to sum the rest of
the series. The results, from both methods differed at most in the second significant figure and
affected the calculated HI == 1+ (1- 2vo)H, only in the third significant figure. The values of H
are presented in tables in Chen's dissertation [18] for different combinations of f3, /lp and /10' It
has been shown that the effect of /lp, Poisson's ratio of the inclusions, on K* is rather insignifi­
cant. Thus the most important variables that determine Hare /10, Poisson's ratio of the matrix.
and f3, the ratio of the shear moduli of the two phases. Figure I shows that, for f3 > 102or f3 < 10-2.
H can be approximated by using the corresponding solutions for rigid particles or cavities (see [I))
with a maximum error of about 1% for HI which is the ratio of the coefficient of the c/J2 term
calculated from the present analysis to that of Walpole's[8] as given by (4).

In [I], the other three different boundary value problems mentioned previously were also
solved to yield three relations between K, Land M, i.e. eqns (28H30), for inclusions that are
either rigid particles or cavities. These solutions can then be used to evaluate the effective shear
modulus for these two limiting cases. Specifically, when the inclusions are rigid, f3 == I1-p/l1-o == 00
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Fig. 1. Ratio of the coefficients for the 1/>2 term of the effective bulk modulus calculated from the present

work to that of Walpole's for /lp = 0.25 as a function of /10 and (3.

and 'Y2= [1/2(4-5/10)]. In this case, we have

and therefore, from (24) and (26),

I-' * = 1+ 15(1- /10) 4> +15(1- /10) [1 +1.. f _1_ (_lC{m +2B{~ +2B{%) (l)m-1]4>2 +O(c/>\
1-'0 2(4-5/10) 2(4-5/10) 25m~6m-3 3 2

(39)

On the other hand, when the inclusions are cavities, {3 = 0 and 'Y2 = 7~5
1
/1

0

" Consequently,

and

(40)

The superscripts I, II and III in the above equations denote the solutions from the three
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systems (28H30) respectively. The summation of the infinite series in eqns (39) and (40) was
carried out using the computer to calculate the terms up to m = 80 and the sums were obtained
by plotting the partial sum Sm vs 11m and extrapolating to 11m =O. The final results are believed to
have a maximum deviation of ± 0.5%. In some of the calculations, the sum of the first eighty terms
gave a good enough approximation and no extrapolation was performed. The results for different
values of Poisson's ratio 110 for the matrix are plotted in Fig. 2 for rigid particles and cavities,
respectively.

In a recent paper by Willis and Acton[12] the effective elastic moduli were also calculated to
0(4/) through the use of an integral equation formulation. These authors, however, made use
only of the far field solution, 0[(aIR)6], for the two-sphere interaction problem and so their
expression for the 0(cf>2) coefficient contains only the first (m = 6) term of the infinite series in
(37), (39) and (40).
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{3 ~ 1.0
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08

{3~ 00

06

04 '=---::-L---:::'=------=-'=---::-'-:---:::-'.00 01 02 03 04 05

Fig. 2. H2 as a function of "0 for rigid inclusions and cavities.

The present results satisfy the Rashin and Shtrikman variational bounds (la) and (lb),
Miller's bounds for K* (3) and are also in good agreement with Batchelor and Green's[15]
calculation for the coefficient of the cf>2 term of the effective shear modulus for rigid particles in
an incompressible matrix whose value they found to be 5.2 ± 0.3 for randomly distributed
spheres. The corresponding number from our solution is 5.01. The difference is probably due to
the fact that Batchelor and Green[l5] did not treat their interaction term exactly. The exact
calculation for the interaction between two spheres is rather tedious to perform because, as
seen in Fig. 3, the quantity j = [(4 - 5110 )J/201Ta 3(l- 1I0 )Mo] as a function of the separation
distance between the spheres changes very rapidly when the two spheres are almost in contact
with each other. In fact, a more detailed calculation of K, K+£ and K+ (4/3)£ + (2/3)M for
different values of (aIR) shows that this rapid change occurs in the term K+ £, where the caret
denotes the appropriate quantity divided by [201Ta 3(1 - 110 )Mo/(4 - 5110 )], Thus a series having eighty
terms gives convergent values for K+ (4/3)£ + (2/3)M, K+ £ when (RIa)? 2.10. For (Rla):s 2.05,
the series for K also converges but for K+ (4/3)£ + (2/3)M and K+ £, the sum corresponding to
an infinite number of terms can only be obtained by extrapolation.

Comparison of our results for these functions with the exact values can be made when two
spheres are in contact, i.e. when (Ria) = 2.0. Using Wakiya's[29] solution, Batchelor and
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Fig. 3. Behavior of K, K+ i. J and K+(4/3)£ + (2/3)M as functions of the separation distance between
the spheres.

Green [28] showed that, in that case,

I( = -0.0472

1(+£=0.1456

A 4 A 2 A

K +"3L+"3M = 0.9104

j = 0.2214
whereas, our calculations give

I( = -0.04724

I( + £ = 0.0630

A 4 A 2 A

K +"3 L+"3 M =0.9135

j = 0.1890.

Thus, the results for I( + (4/3)£ + (2/3)M are accurate to three significant figures in the range
2.0 ::s (R/ a) ::s 2.05. On the other hand, the errors involved in the calculation of I( + L are not certain
owing to the rapid change of the function as (R/a) approaches 2.0; it is believed though that, in the
range 2.0025::s (R/ a)::s 2.05, the results are still accurate to three significant figures but, as
(R/ a) 4 2.0, the accuracy decreases rapidly to only one significant figure (I( + L - 0.1).

Using the exact values at (R/ a) = 2.0, a curve fit for 8, defined as 8 = (R/a) - 2.0, in the
range O::S 8 ::s 0.05 gives

SS Vol. 14. No. 5--C

j = 0.2214 + 0.20 (lner' - 0.55e + o(e)

I( = - 0.04724 + 0.08788 + o(e)

I( + L= 0.1456+ 0.51 (Iner' +0.308 + o(e)

A 4 A 2 A

K +"3 L+"3 M = 0.9104- 3.50 8 + 0(8)

(41)
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which are depicted in Fig. 4 for e --+0. As shown in [I], the form of (41) can be justified
rigorously using "Iubriction theory".

Although the present numerical calculation for the function J loses accuracy when the
particles almost touch, this does not affect the accuracy of the computed coefficient of the
O(<//) term in the effective shear modulus which, being dependent only on the integral fz~, J(R)

R2dR. is very insensitive to the exact shape of the function J when (R/ a) =0 2.

02 LO

00
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K

00

-0.1 ':::-::::---::-l:-=-----c:~-~:::_;::__-~;_____;:;c~-= -0 5
000 002 010 012

E

Fig. 4. Behavior of the functions K. K+ £. j and K+ (4/3)£ +(2/3)M as £ .... 0. -, eqn (41): O-present
calculations: ----.exact results for two touching spheres[28].

5. INCOMPRESSIBLE MATRIX

In the special case when the continuous phase is incompressible (110 =0 0.5 and Ko =0 00), the
expression for the effective bulk modulus (37) is no longer valid since the series diverges for
any volume concentration </>. However, (37) can be rearranged into (8)

which is equivalent to (37) when </> <1i: I, but is more useful when 110 - 0.5 and K o is very large.
Specifically, in the limit as Ko --+00 and 110 --+0.5, we have that Ko-1YI--+ - 3/(3Kp +41L0) and

which can be immediately recast into (9).
It is observed that when the particles are also incompressible (Kp =0 00), (9) gives K* =0 00 since

the composite should be incompressible as well. When the two phases have the same shear
modulus, we have H =0 0 and therefore, from (9),

which is again in agreement with (3), Hill's equation for K o =0 00. For the particular case of
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cavities in an incompressible material, (9) becomes

K* = t; -1.733#Lo + O(q,).
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(42)

Since K* = A*+ (2/3)#L * and #L *= #Lo + O(q,), we can also obtain for the effective Lame constant

A*= t; -2.399#Lo + O(q,). (43)

It is to this last case that the analogy between solid mechanics and fluid mechanics applies. In
fluid mechanics, the stress-rate of strain relation is given as

where p is the pressure, #L the shear viscosity and #L' the second coefficient of viscosity (or
expansion viscosity) of the fluid. Lame's constant A is therefore analogous to #L' and the
counterpart of the bulk modulus K is the bulk viscosity defined as (= #L' + (2/3 )#L. Now, a
composite consisting of cavities in an incompressible material is equivalent to an in­
compressible fluid containing air bubbles. Taylor[20] studied this case and obtained for the
second coefficient of viscosity

#L'* =~~ + 0(1). (44)

Later Davies [30] showed that the singularity #L'* ....HXJ when q, -'> 0, can be eliminated by
introducing compressibility in the surrounding fluid. However, it should be pointed out that
Davies' results does not correspond to any of our findings because the analogy between solid
mechanics and fluid mechanics is valid only in the limiting case when the fluid is in­
compressible. At any rate it is clear that (42) extends Taylor's results by taking into account
two-particle interactions.

As concerns the effective shear modulus, eqn (7) is valid when 110 = 0.5. However, the
analogy between the effective shear modulus of a composite and the effective viscosity of a
suspension will hold only when the concentration q, is very small and the interactions between
particles are negligible because when particle interactions have to be considered, the statistical
properties of particle arrangement in the two cases are different. Thus, in the fluid suspension
case, the bulk motion will greatly affect the probability density function P(rIO), whereas in the
solid composite the infinitesimal strain applied has negligible effect on the arrangement of the
particles. Thus the analogy between fluid and solid mechanics does not hold in general for (7).
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